Increase in the amount of celA1 protein in tobacco BY-2 cells by a cellulose biosynthesis inhibitor, 2,6-dichlorobenzonitrile.
نویسندگان
چکیده
The biochemical analysis of cellulose biosynthesis by plants has been a difficult problem due to the lack of a reliable assay procedure for cellulose synthase activity. Recently, the celA1 gene was cloned from cotton fiber, and this gene was identified from the rsw1 mutant of Arabidopsis as a catalytic subunit of cellulose synthase (Arioli et al. 1998). The cloning of these genes enables us to obtain specific antibodies against cellulose synthase. A highly specific antibody against celA1 protein was prepared and used to detect the protein from microsomal fraction of tobacco BY-2 cells. The quantity of celA1 protein in microsomal fraction of normal BY-2 cells was under the detection limit, although they contained a large quantity of cellulose. In contrast, cells habituated to 1 microM DCB (a specific inhibitor of cellulose biosynthesis) produced 1/10 of cellulose content of the normal cells, but had much more celA1 protein than the normal cells. The amount of polysaccharides in the EDTA-soluble fraction was relatively increased in habituated cells. The results suggest that celA1 protein is stabilized upon DCB binding and that the crystallization of cellulose microfibrils is inhibited simultaneously.
منابع مشابه
MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile.
We have identified a gene, denoted PttMAP20, which is strongly up-regulated during secondary cell wall synthesis and tightly coregulated with the secondary wall-associated CESA genes in hybrid aspen (Populus tremula x tremuloides). Immunolocalization studies with affinity-purified antibodies specific for PttMAP20 revealed that the protein is found in all cell types in developing xylem and that ...
متن کاملProduction of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile.
This report provides X-ray diffraction and Raman spectral evidence that, when 2,6-dichlorobenzonitrile is present in the culture medium, Acetobacter xylinum, which is a model system for investigation of the biosynthesis of native cellulose, produces cellulose II, as well as cellulose I. The significance of the observations with respect to the mechanism of biosynthesis of cellulose is discussed ...
متن کاملAdaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network.
Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) have been adapted to growth on high concentrations of 2,6-dichlorobenzonitrile, an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of these cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on 2,...
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملIncreased Cytotoxicity of Cisplatin in SK-MEL 28 Melanoma Cells upon Down-Regulation of Melanoma Inhibitor of Apoptosis Protein
Background: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. Methods: Based on the conclusion that ML-IAP expression contribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 39 7 شماره
صفحات -
تاریخ انتشار 1998